Alternative Dynamic Network Structures for Non-linear System Modelling- Camera ready
نویسندگان
چکیده
Hopfield Neural Networks have been used as universal identifiers of non-linear systems, because of their inherent dynamic properties. However the design decision of the number of neurons in the Hopfield network is not easy to make, in order for the network model to have the necessary complexity, extra neurons are required. This poses a problem since the role of the states that these neurons represent is not clear. Adding a hidden layer in the Hopfield network model increases the complexity of the model without posing the extra states problem. Alternatively breaking the problem down by having different interconnected Hopfield networks modeling each state, also increase the complexity of the problem. A comparison between the three approaches (traditional Hopfield, Hopfield with a hidden layer, and multiple interconnected Hopfield networks) indicates equivalence between the three structures, but with the alternative cases having increased connectivity in the feedback matrix, and limited connectivity in the weight matrices.
منابع مشابه
Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملArtificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river
ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water...
متن کاملStudies with a Generalized Neuron Based PSS on a Multi-Machine Power System
An artificial neural network can be used as an intelligent controller to control non-linear, dynamic system through learning. It can easily accommodate non-linearities and time dependencies. Most common multi-layer feed-forward neural networks have the drawbacks of large number of neurons and hidden layers required to deal with complex problems and require large training time. To overcome these...
متن کاملPedestrians Tracking in a Camera Network
With the increase of the number of cameras installed across a video surveillance network, the ability of security staffs to attentively scan all the video feeds actually decreases. Therefore, the need for an intelligent system that operates as a tracking system is vital for security personnel to do their jobs well. Tracking people as they move through a camera network with non-overlapping field...
متن کاملA Benders� Decomposition Approach for Dynamic Cellular Manufacturing System in the Presence of Unreliable Machines
In order to implement the cellular manufacturing system in practice, some essential factors should be taken into account. In this paper, a new mathematical model for cellular manufacturing system considering different production factors including alternative process routings and machine reliability with stochastic arrival and service times in a dynamic environment is proposed. Also because of t...
متن کامل